Popular Cynthia Breeding Books 2022

Cynthia Breeding

Who is Cynthia Breeding?

Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of agricultural applications. The most frequently addressed traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules (proteins, sugars, lipids, vitamins, fibers) and ease of processing (harvesting, milling, baking, malting, blending, etc.).Plant breeding can be performed through many different techniques ranging from simply selecting plants with desirable characteristics for propagation, to methods that make use of knowledge of genetics and chromosomes, to more complex molecular techniques (see cultigen and cultivar). Genes in a plant are what determine what type of qualitative or quantitative traits it will have. Plant breeders strive to create a specific outcome of plants and potentially new plant varieties, and in the course of doing so, narrow down the genetic diversity of that variety to a specific few biotypes.It is practiced worldwide by individuals such as gardeners and farmers, and by professional plant breeders employed by organizations such as government institutions, universities, crop-specific industry associations or research centers. International development agencies believe that breeding new crops is important for ensuring food security by developing new varieties that are higher yielding, disease resistant, drought tolerant or regionally adapted to different environments and growing conditions. History Plant breeding started with sedentary agriculture and particularly the domestication of the first agricultural plants, a practice which is estimated to date back 9,000 to 11,000 years. Initially early farmers simply selected food plants with particular desirable characteristics, and employed these as progenitors for subsequent generations, resulting in an accumulation of valuable traits over time. Grafting technology had been practiced in China before 2000 BCE.By 500 BCE grafting was well established and practiced.Gregor Mendel (1822–84) is considered the "father of genetics". His experiments with plant hybridization led to his establishing laws of inheritance. Genetics stimulated research to improve crop production through plant breeding. Modern plant breeding is applied genetics, but its scientific basis is broader, covering molecular biology, cytology, systematics, physiology, pathology, entomology, chemistry, and statistics (biometrics). It has also developed its own technology. Classical plant breeding One major technique of plant breeding is selection, the process of selectively propagating plants with desirable characteristics and eliminating or "culling" those with less desirable characteristics.Another technique is the deliberate interbreeding (crossing) of closely or distantly related individuals to produce new crop varieties or lines with desirable properties. Plants are crossbred to introduce traits/genes from one variety or line into a new genetic background. For example, a mildew-resistant pea may be crossed with a high-yielding but susceptible pea, the goal of the cross being to introduce mildew resistance without losing the high-yield characteristics. Progeny from the cross would then be crossed with the high-yielding parent to ensure that the progeny were most like the high-yielding parent, (backcrossing). The progeny from that cross would then be tested for yield (selection, as described above) and mildew resistance and high-yielding resistant plants would be further developed. Plants may also be crossed with themselves to produce inbred varieties for breeding. Pollinators may be excluded through the use of pollination bags. Classical breeding relies largely on homologous recombination between chromosomes to generate genetic diversity. The classical plant breeder may also make use of a number of in vitro techniques such as protoplast fusion, embryo rescue or mutagenesis (see below) to generate diversity and produce hybrid plants that would not exist in nature. Traits that breeders have tried to incorporate into crop plants include: Improved quality, such as increased nutrition, improved flavor, or greater beauty Increased yield of the crop Increased tolerance of environmental pressures (salinity, extreme temperature, drought) Resistance to viruses, fungi and bacteria Increased tolerance to insect pests Increased tolerance of herbicides Longer storage period for the harvested cropBefore World War II Successful commercial plant breeding concerns were founded from the late 19th century. Gartons Agricultural Plant Breeders in England was established in the 1890s by John Garton, who was one of the first to commercialize new varieties of agricultural crops created through cross-pollination. The firm's first introduction was Abundance Oat, one of the first agricultural grain varieties bred from a controlled cross, introduced to commerce in 1892.In the early 20th century, plant breeders realized that Mendel's findings on the non-random nature of inheritance could be applied to seedling populations produced through deliberate pollinations to predict the frequencies of different types. Wheat hybrids were bred to increase the crop production of Italy during the so-called "Battle for Grain" (1925–1940). Heterosis was explained by George Harrison Shull. It describes the tendency of the progeny of a specific cross to outperform both parents. The detection of the usefulness of heterosis for plant breeding has led to the development of inbred lines that reveal a heterotic yield advantage when they are crossed. Maize was the first species where heterosis was widely used to produce hybrids. Statistical methods were also developed to analyze gene action and distinguish heritable variation from variation caused by environment. In 1933 another important breeding technique, cytoplasmic male sterility (CMS), developed in maize, was described by Marcus Morton Rhoades. CMS is a maternally inherited trait that makes the plant produce sterile pollen. This enables the production of hybrids without the need for labor-intensive detasseling. These early breeding techniques resulted in large yield increase in the United States in the early 20th century. Similar yield increases were not produced elsewhere until after World War II, the Green Revolution increased crop production in the developing world in the 1960s. After World War II Following World War II a number of techniques were developed that allowed plant breeders to hybridize distantly related species, and artificially induce genetic diversity. When distantly related species are crossed, plant breeders make use of a number of plant tissue culture techniques to produce progeny from otherwise fruitless mating. Interspecific and intergeneric hybrids are produced from a cross of related species or genera that do not normally sexually reproduce with each other. These crosses are referred to as Wide crosses. For example, the cereal triticale is a wheat and rye hybrid. The cells in the plants derived from the first generation created from the cross contained an uneven number of chromosomes and as a result was sterile. The cell division inhibitor colchicine was used to double the number of chromosomes in the cell and thus allow the production of a fertile line. Failure to produce a hybrid may be due to pre- or post-fertilization incompatibility. If fertilization is possible between two species or genera, the hybrid embryo may abort before maturation. If this does occur the embryo resulting from an interspecific or intergeneric cross can sometimes be rescued and cultured to produce a whole plant. Such a method is referred to as Embryo Rescue. This technique has been used to produce new rice for Africa, an interspecific cross of Asian rice (Oryza sativa) and African rice (Oryza glaberrima). Hybrids may also be produced by a technique called protoplast fusion. In this case protoplasts are fused, usually in an electric field. Viable recombinants can be regenerated in culture. Chemical mutagens like EMS and DMS, radiation and transposons are used to generate mutants with desirable traits to be bred with other cultivars – a process known as Mutation Breeding. Classical plant breeders also generate genetic diversity within a species by exploiting a process called somaclonal variation, which occurs in plants produced from tissue culture, particularly plants derived from callus. Induced polyploidy, and the addition or removal of chromosomes using a technique called chromosome engineering may also be used. When a desirable trait has been bred into a species, a number of crosses to the favored parent are made to make the new plant as similar to the favored parent as possible. Returning to the example of the mildew resistant pea being crossed with a high-yielding but susceptible pea, to make the mildew resistant progeny of the cross most like the high-yielding parent, the progeny will be crossed back to that parent for several generations (See backcrossing). This process removes most of the genetic contribution of the mildew resistant parent. Classical breeding is therefore a cyclical process.With classical breeding techniques, the breeder does not know exactly what genes have been introduced to the new cultivars. Some scientists therefore argue that plants produced by classical breeding methods should undergo the same safety testing regime as genetically modified plants. There have been instances where plants bred using classical techniques have been unsuitable for human consumption, for example the poison solanine was unintentionally increased to unacceptable levels in certain varieties of potato through plant breeding. New potato varieties are often screened for solanine levels before reaching the marketplace.Even with the very latest in biotech-assisted conventional breeding, incorporation of a trait takes an average of seven generations for clonally propagated crops, nine for self-fertilising, and seventeen for cross-pollinating. Modern plant breeding Modern plant breeding may use techniques of molecular biology to select, or in the case of genetic modification, to insert, desirable traits into plants. Application of biotechnology or molecular biology is also known as molecular breeding. Marker assisted selection Sometimes many different genes can influence a desirable trait in plant breeding. The use of tools such as molecular markers or DNA fingerprinting can map thousands of genes. This allows plant breeders to screen large populations of plants for those that possess the trait of interest. The screening is based on the presence or absence of a certain gene as determined by laboratory procedures, rather than on the visual identification of the expressed trait in the plant. The purpose of marker assisted selection, or plant genome analysis, is to identify the location and function (phenotype) of various genes within the genome. If all of the genes are identified it leads to genome sequence. All plants have varying sizes and lengths of genomes with genes that code for different proteins, but many are also the same. If a gene's location and function is identified in one plant species, a very similar gene likely can also be found in a similar location in another related species genome. Reverse breeding and doubled haploids (DH) Homozygous plants with desirable traits can be produced from heterozygous starting plants, if a haploid cell with the alleles for those traits can be produced, and then used to make a doubled haploid. The doubled haploid will be homozygous for the desired traits. Furthermore, two different homozygous plants created in that way can be used to produce a generation of F1 hybrid plants which have the advantages of heterozygosity and a greater range of possible traits. Thus, an individual heterozygous plant chosen for its desirable characteristics can be converted into a heterozygous variety (F1 hybrid) without the necessity of vegetative reproduction but as the result of the cross of two homozygous/doubled haploid lines derived from the originally selected plant. Plant tissue culturing can produce haploid or double haploid plant lines and generations. This cuts down the genetic diversity taken from that plant species in order to select for desirable traits that will increase the fitness of the individuals. Using this method decreases the need for breeding multiple generations of plants to get a generation that is homogenous for the desired traits, thereby saving much time over the natural version of the same process. There are many plant tissue culturing techniques that can be used to achieve haploid plants, but microspore culturing is currently the most promising for producing the largest numbers of them. Genetic modification Genetic modification of plants is achieved by adding a specific gene or genes to a plant, or by knocking down a gene with RNAi, to produce a desirable phenotype. The plants resulting from adding a gene are often referred to as transgenic plants. If for genetic modification genes of the species or of a crossable plant are used under control of their native promoter, then they are called cisgenic plants. Sometimes genetic modification can produce a plant with the desired trait or traits faster than classical breeding because the majority of the plant's genome is not altered. To genetically modify a plant, a genetic construct must be designed so that the gene to be added or removed will be expressed by the plant. To do this, a promoter to drive transcription and a termination sequence to stop transcription of the new gene, and the gene or genes of interest must be introduced to the plant. A marker for the selection of transformed plants is also included. In the laboratory, antibiotic resistance is a commonly used marker: Plants that have been successfully transformed will grow on media containing antibiotics; plants that have not been transformed will die. In some instances markers for selection are removed by backcrossing with the parent plant prior to commercial release. The construct can be inserted in the plant genome by genetic recombination using the bacteria Agrobacterium tumefaciens or A. rhizogenes, or by direct methods like the gene gun or microinjection. Using plant viruses to insert genetic constructs into plants is also a possibility, but the technique is limited by the host range of the virus. For example, Cauliflower mosaic virus (CaMV) only infects cauliflower and related species. Another limitation of viral vectors is that the virus is not usually passed on to the progeny, so every plant has to be inoculated. The majority of commercially released transgenic plants are currently limited to plants that have introduced resistance to insect pests and herbicides. Insect resistance is achieved through incorporation of a gene from Bacillus thuringiensis (Bt) that encodes a protein that is toxic to some insects. For example, the cotton bollworm, a common cotton pest, feeds on Bt cotton it will ingest the toxin and die. Herbicides usually work by binding to certain plant enzymes and inhibiting their action. The enzymes that the herbicide inhibits are known as the herbicides target site. Herbicide resistance can be engineered into crops by expressing a version of target site protein that is not inhibited by the herbicide. This is the method used to produce glyphosate resistant ("Roundup Ready") crop plants. Genetic modification can further increase yields by increasing stress tolerance to a given environment. Stresses such as temperature variation, are signalled to the plant via a cascade of signalling molecules which will activate a transcription factor to regulate gene expression. Overexpression of particular genes involved in cold acclimation has been shown to produce more resistance to freezing, which is one common cause of yield lossGenetic modification of plants that can produce pharmaceuticals (and industrial chemicals), sometimes called pharming, is a rather radical new area of plant breeding. Breeding and the microbiome Microbiomes of breeding lines showed that hybrid plants share much of their bacterial community with their parents, such as Cucurbita seeds and apple shoot endophytes. In addition, the proportional contribution of the microbiome from parents to offspring corresponds to the amount of genetic material contributed by each parent during breeding and domestication. Phenotyping and artificial intelligence As of 2020 machine learning – and especially deep machine learning – has recently become more commonly used in phenotyping. Computer vision using ML has made great strides and is now being applied to leaf phenotyping and other phenotyping jobs typically performed by human eyes. Pound et al 2017 and Singh et al 2016 are especially salient examples of early successful application and demonstration of the general usability of the process across multiple target plant species. These methods will work even better with large, publicly available open data sets. Speed breeding Speed breeding is introduced by Watson et al 2018. Classical (human performed) phenotyping during speed breeding is also possible, using a procedure developed by Richard et al 2015. As of 2020 it is highly anticipated that SB and automated phenotyping will, combined, produce greatly improved outcomes – see § Phenotyping and artificial intelligence above. Issues and concerns Modern plant breeding, whether classical or through genetic engineering, comes with issues of concern, particularly with regard to food crops. The question of whether breeding can have a negative effect on nutritional value is central in this respect. Although relatively little direct research in this area has been done, there are scientific indications that, by favoring certain aspects of a plant's development, other aspects may be retarded. A study published in the Journal of the American College of Nutrition in 2004, entitled Changes in USDA Food Composition Data for 43 Garden Crops, 1950 to 1999, compared nutritional analysis of vegetables done in 1950 and in 1999, and found substantial decreases in six of 13 nutrients measured, including 6% of protein and 38% of riboflavin. Reductions in calcium, phosphorus, iron and ascorbic acid were also found. The study, conducted at the Biochemical Institute, University of Texas at Austin, concluded in summary: "We suggest that any real declines are generally most easily explained by changes in cultivated varieties between 1950 and 1999, in which there may be trade-offs between yield and nutrient content."The debate surrounding genetically modified food during the 1990s peaked in 1999 in terms of media coverage and risk perception, and continues today – for example, "Germany has thrown its weight behind a growing European mutiny over genetically modified crops by banning the planting of a widely grown pest-resistant corn variety." The debate encompasses the ecological impact of genetically modified plants, the safety of genetically modified food and concepts used for safety evaluation like substantial equivalence. Such concerns are not new to plant breeding. Most countries have regulatory processes in place to help ensure that new crop varieties entering the marketplace are both safe and meet farmers' needs. Examples include variety registration, seed schemes, regulatory authorizations for GM plants, etc. Plant breeders' rights is also a major and controversial issue. Today, production of new varieties is dominated by commercial plant breeders, who seek to protect their work and collect royalties through national and international agreements based in intellectual property rights. The range of related issues is complex. In the simplest terms, critics of the increasingly restrictive regulations argue that, through a combination of technical and economic pressures, commercial breeders are reducing biodiversity and significantly constraining individuals (such as farmers) from developing and trading seed on a regional level. Efforts to strengthen breeders' rights, for example, by lengthening periods of variety protection, are ongoing.When new plant breeds or cultivars are bred, they must be maintained and propagated. Some plants are propagated by asexual means while others are propagated by seeds. Seed propagated cultivars require specific control over seed source and production procedures to maintain the integrity of the plant breeds results. Isolation is necessary to prevent cross contamination with related plants or the mixing of seeds after harvesting. Isolation is normally accomplished by planting distance but in certain crops, plants are enclosed in greenhouses or cages (most commonly used when producing F1 hybrids). Breeding is also not a quick process. This is especially important when breeding to ameliorate a disease: The average time from human recognition of a new fungal disease threat to the release of a resistant crop for that pathogen is at least twelve years. Role of plant breeding in organic agriculture Critics of organic agriculture claim it is too low-yielding to be a viable alternative to conventional agriculture. However, part of that poor performance may be the result of growing poorly adapted varieties. It is estimated that over 95% of organic agriculture is based on conventionally adapted varieties, even though the production environments found in organic vs. conventional farming systems are vastly different due to their distinctive management practices. Most notably, organic farmers have fewer inputs available than conventional growers to control their production environments. Breeding varieties specifically adapted to the unique conditions of organic agriculture is critical for this sector to realize its full potential. This requires selection for traits such as: Water use efficiency Nutrient use efficiency (particularly nitrogen and phosphorus) Weed competitiveness Tolerance of mechanical weed control Pest/disease resistance Early maturity (as a mechanism for avoidance of particular stresses) Abiotic stress tolerance (i.e. drought, salinity, etc...)Currently, few breeding programs are directed at organic agriculture and until recently those that did address this sector have generally relied on indirect selection (i.e. selection in conventional environments for traits considered important for organic agriculture). However, because the difference between organic and conventional environments is large, a given genotype may perform very differently in each environment due to an interaction between genes and the environment (see gene–environment interaction). If this interaction is severe enough, an important trait required for the organic environment may not be revealed in the conventional environment, which can result in the selection of poorly adapted individuals. To ensure the most adapted varieties are identified, advocates of organic breeding now promote the use of direct selection (i.e. selection in the target environment) for many agronomic traits. There are many classical and modern breeding techniques that can be utilized for crop improvement in organic agriculture despite the ban on genetically modified organisms. For instance, controlled crosses between individuals allow desirable genetic variation to be recombined and transferred to seed progeny via natural processes. Marker assisted selection can also be employed as a diagnostics tool to facilitate selection of progeny who possess the desired trait(s), greatly speeding up the breeding process. This technique has proven particularly useful for the introgression of resistance genes into new backgrounds, as well as the efficient selection of many resistance genes pyramided into a single individual. Unfortunately, molecular markers are not currently available for many important traits, especially complex ones controlled by many genes. Breeding and food security For agriculture to thrive in the future, changes must be made to address arising global issues. These issues are the lack of arable land, increasingly harsh cropping conditions and the need to maintain food security, which involves being able to provide the world population with sufficient nutrition. Crops need to be able to mature in multiple environments to allow worldwide access, which involves solving problems including drought tolerance. It has been suggested that global solutions are achievable through the process of plant breeding, with its ability to select specific genes allowing crops to perform at a level which yields the desired results. Yield With an increasing population, the production of food needs to increase with it. It is estimated that a 70% increase in food production is needed by 2050 in order to meet the Declaration of the World Summit on Food Security. But with the degradation of agricultural land, simply planting more crops is no longer a viable option. New varieties of plants can in some cases be developed through plant breeding that generate an increase of yield without relying on an increase in land area. An example of this can be seen in Asia, where food production per capita has increased twofold. This has been achieved through not only the use of fertilisers, but through the use of better crops that have been specifically designed for the area. Nutritional value Plant breeding can contribute to global food security as it is a cost-effective tool for increasing nutritional value of forage and crops. Improvements in nutritional value for forage crops from the use of analytical chemistry and rumen fermentation technology have been recorded since 1960; this science and technology gave breeders the ability to screen thousands of samples within a small amount of time, meaning breeders could identify a high performing hybrid quicker. The genetic improvement was mainly in vitro dry matter digestibility (IVDMD) resulting in 0.7-2.5% increase, at just 1% increase in IVDMD a single Bos Taurus also known as beef cattle reported 3.2% increase in daily gains. This improvement indicates plant breeding is an essential tool in gearing future agriculture to perform at a more advanced level. Environmental stressors Plant breeding of hybrid crops has become extremely popular worldwide in an effort to combat the harsh environment. With long periods of drought and lack of water or nitrogen stress tolerance has become a significant part of agriculture. Plant breeders have focused on identifying crops which will ensure crops perform under these conditions; a way to achieve this is finding strains of the crop that is resistance to drought conditions with low nitrogen. It is evident from this that plant breeding is vital for future agriculture to survive as it enables farmers to produce stress resistant crops hence improving food security. In countries that experience harsh winters such as Iceland, Germany and further east in Europe, plant breeders are involved in breeding for tolerance to frost, continuous snow-cover, frost-drought (desiccation from wind and solar radiation under frost) and high moisture levels in soil in winter. Participatory plant breeding Participatory plant breeding (PPB) is when farmers are involved in a crop improvement programme with opportunities to make decisions and contribute to the research process at different stages. Participatory approaches to crop improvement can also be applied when plant biotechnologies are being used for crop improvement. Local agricultural systems and genetic diversity are developed and strengthened by crop improvement, which participatory crop improvement (PCI) plays a large role. PPB is enhanced by farmers knowledge of the quality required and evaluation of target environment which affects the effectiveness of PPB. List of notable plant breeders Thomas Andrew Knight Keith Downey Luther Burbank Nazareno Strampelli Niels Ebbesen Hansen Norman BorlaugSee also References General McCouch, S. (2004). "Diversifying Selection in Plant Breeding". PLOS Biol. 2 (10): e347. doi:10.1371/journal.pbio.0020347. PMC 521731. PMID 15486582. Briggs, F.N. and Knowles, P.F. 1967. Introduction to Plant Breeding. Reinhold Publishing Corporation, New York. Curry, Helen Anne. Evolution Made to Order: Plant Breeding and Technological Innovation in Twentieth-Century America (U of Chicago Press, 2016). x, 285 pp. Gepts, P. (2002). "A Comparison between Crop Domestication, Classical Plant Breeding, and Genetic Engineering". Crop Science. 42 (6): 1780–1790. doi:10.2135/cropsci2002.1780. The Origins of Agriculture and Crop Domestication – The Harlan Symposium Schlegel, Rolf (2009) Encyclopedic Dictionary of Plant Breeding 2nd ed. (ISBN 9781439802427), CRC Press, Boca Raton, FL, USA, pp 584 Schlegel, Rolf (2007) Concise Encyclopedia of Crop Improvement: Institutions, Persons, Theories, Methods, and Histories (ISBN 9781560221463), CRC Press, Boca Raton, FL, USA, pp 423 Schlegel, Rolf (2014) Dictionary of Plant Breeding, 2nd ed., (ISBN 978-1439802427), CRC Press, Boca Raton, Taylor & Francis Group, Inc., New York, USA, pp 584 Schouten, Henk J.; Krens, Frans A.; Jacobsen, Evert (2006). "Do cisgenic plants warrant less stringent oversight?". Nature Biotechnology. 24 (7): 753. doi:10.1038/nbt0706-753. PMID 16841052. S2CID 8087798. Schouten, Henk J.; Krens, Frans A.; Jacobsen, Evert (2006). "Cisgenic plants are similar to traditionally bred plants". EMBO Reports. 7 (8): 750–753. doi:10.1038/sj.embor.7400769. PMC 1525145. PMID 16880817. Sun. "From indica and japonica splitting in common wild rice DNA to the origin and evolution of Asian cultivated rice". Agricultural Archaeology. 1998: 21–29. Thro, A.M.; Spillane, C. (1999) Biotechnology assisted participatory plant breeding: Complement or contradiction? CGIAR Program on Participatory Research and Gender Analysis, Working Document No.4, CIAT: Cali. 150pp. Deppe, Carol (2000). Breed Your Own Vegetable Varieties. Chelsea Green Publishing. Vaschetto, Luis M., ed. (2020). Cereal Genomics. Methods in Molecular Biology. Vol. 2072. doi:10.1007/978-1-4939-9865-4. ISBN 978-1-4939-9864-7. ISSN 1064-3745. S2CID 82398463.External links Plant Breeding and Genomics eXtension Community of Practice – education and training materials for plant breeders and allied professionals Plant Breeding Updates Hybridization of Crop Plants – large practical reference on plant hybridization Infography about the History of Plant Breeding Glossary of plant breeding terminology by the Open Plant Breeding Foundation National Association of Plant Breeders (NAPB) The Global Partnership Initiative for Plant Breeding Capacity Building – GIPB FAO/IAEA Programme Mutant Variety Database FDA Statement of Policy – Foods Derived from New Plant Varieties A Breed Apart: The Plant Breeder's Guide to Preventing Patents through Defensive Publication by Cydnee V. Bence & Emily J. Speigel, 2019

Sword of the Highlander

Sword of the Highlander

4.5/5$0.99

A short time travel romance -The sword of Niall MacChumail, the Great Féinn, ends up in a costume shop in Haight-Ashbury and Niall crosses centuries to reclaim it.~~...

Portal of Dragons

Portal of Dragons

0/5$1.99

A Paranormal Romance Anthology -Three dragon-shifters who fought with the Pendragon and King Arthur have been given the honor and duty of protecting three powerful stones—a sap...

Enchanted Journey

Enchanted Journey

0/5$0.99

An exciting Regency time-travel story...Attending a Regency ball by a local group of actors is just what American Ashley Bouvier needs to get over her messy divorce from a cheati...

Court of Love

Court of Love

0/5$1.99

Love WaitsDacey O’Connor longs to return home to Ireland, but is left nearly destitute after her cheating husband is killed in a duel and she must rely on the hospitality of he...

The Immortals II: Michael

The Immortals II: Michael

0/5$4.99

A roguish warlock skilled in seducing women…a modern woman who doesn’t believe in magic. A sword they both need to find. What can go wrong?When medieval warlock Michael McCai...

Rogue of the Borders

Rogue of the Borders

4.5/5$3.99

Abigail Townsend longs for the type of excitement she reads about in her beloved books. She knows she won’t find anything remotely resembling an adventure at any of the stuffy events of th...

The Immortals IV: Troy

The Immortals IV: Troy

0/5$4.99

Stalked by the Devil himself, only one man can save this woman…but his memory is gone.An eccentric Dallas millionaire who collects medieval artifacts hires a modern-day Seer to...

A Highlander for Christmas: Caroline Campbell's Dream

A Highlander for Christmas: Caroline Campbell's Dream

0/5$0.99

Magic Happens at ChristmasA modern woman is sent back in Time to ensure her future is bright.After her husband’s untimely death in Afghanistan, Caroline Campbell wi...

EnPointe for Love

EnPointe for Love

0/5$0.99

Russian ballerina Veronika Dubove is thrilled to be performing at London’s Loveland Theatre. Even more thrilling is the nightly attendance of Simon Ardleigh, the Duke of Wentworth, with hi...

Lochs and Lasses

Lochs and Lasses

0/5$1.99

A Knight's Duel: Sir Devon of Clyde soon finds himself in a quandary as he escorts Adele to wed the king's son. Tables turn. Instead of becoming a bride, she becomes a hostage with her very ...

All I Want for Christmas Is You

All I Want for Christmas Is You

0/5$1.99

Six delightful Christmas tales - from Jimmy Buffett, to an author, a charming Regency romp, to the season of miracles.~~~Lured by Jimmy Buffett’s lyrics of Christmas Island, it...

Danger In Paradise

Danger In Paradise

0/5$0.99

A Short Story -Nearing her thirtieth birthday, Kristan Johnson needs a break from teaching rambunctious nine-year-olds. What better place to escape to that a warm paradise island...

Hearts of the West

Hearts of the West

0/5$1.99

They moved out West, to small towns where dreams of finding home could come true…The Lady and the Cowboy –An English Lady finds a home on the range with a very de...

A Rake's Revenge

A Rake's Revenge

4.5/5$3.99

After being abandoned by her almost-betrothed, Caroline Nash vows to never again get involved with a man. Especially not the middle-aged earl her father has chosen for her. The man is a pomp...

Prelude to Camelot

Prelude to Camelot

0/5$1.99

A BOY BORN TO BE KING: Arthur has no idea of who is father is, only that he must fightto save Britain from the Saxons. A GIRL DESTINED TO BE QUEEN: Fiercely independent, Gwenhwyfar is determ...

BlogFace Blarney

BlogFace Blarney

0/5$3.99

"Oh, what a tangled web we weave, when first we practice to deceive." –Marmion, Sir Walter ScottArt instructor Eve O’Connor’s louse of an ex-husband absconded with her enti...

Highland Hero

Highland Hero

4.5/5$3.99

If Juliana Caldwell said the sky was blue, Rory MacGregor would tell her it was gray with a storm due any minute. No man gets under her skin more than the arrogantly handsome Scot. When she ...

The Immortals III: Gavin

The Immortals III: Gavin

0/5$4.99

Used to losers in bars, a free-spirit woman finally meets the man of her dreams. Little does she know he’s a vampire who thirsts for her.The mangled corpse on a quiet Dallas st...

Night Prey

Night Prey

0/5$3.99

Ariel had a job to do and she never mixed business with pleasure. As satisfying as their night together was, she knew she couldn’t allow her interest in the sexy Alexandre Padget to go any...

Fate of Camelot

Fate of Camelot

0/5$1.99

Accompanied by Gwenhwyfar, King Arthur is healed on the holy isle of Avalon. But Avalon is surrounded by the ever-shifting Land of Faerie. Cernunnos, god of the Wild Hunt, captures Gwenhwyfa...

Christmas Dreams

Christmas Dreams

0/5$1.99

Magic Happens at ChristmasThree modern women are sent back in Time to ensure their futures are bright.Something seems to be missing from the three women's lives. Yet ...

A Rake's Redemption

A Rake's Redemption

4/5$3.99

Alexander Ashley has decided women of the ton are more interested in status than love. His game is seduction and nothing more. His feelings regarding aristocratic ladies leads to an outlandi...

Second Time Around

Second Time Around

0/5$1.99

Love's more comfortable the second time around. Just as wonderful with both feet on the ground . . .From betrayal, to broken hearts, to finding love again, Second Time Around has...

A Season for Love

A Season for Love

4/5$0.99

A Regency novella...A vicar’s orphaned daughter, Elizabeth Townsend is grateful to her uncle, the Earl of Dewberry, for taking her in. When she is thrown from her horse while o...

Mists of Camelot

Mists of Camelot

0/5$1.99

Love tested by time…Prelude to CamelotArthur looked around the stone church. He was surprised Morgana had made the trip. She looked like a well-fed cat who knew where the...

Treasure of Campeche

Treasure of Campeche

0/5$0.99

A Short Story -Ilsa took a deep breath and held out her hand. “If you’ll give me that, I had better get back.”A corner of his mouth lifted in half-smile as he t...

A Dragon's Tale

A Dragon's Tale

0/5$0.99

…Dragons…Shifters…SlayersThree dragon-shifters who fought with the Pendragon and King Arthur have been given the honor and duty of protecting three powerful stones—a sapp...

Blue Skies of Texas

Blue Skies of Texas

0/5$0.99

A Short Story - In order to expose the sheriff for what he was—a criminal that poisoned local ranchers’ water forcing them to sell to wealthy Yankees—Texas Ranger Luke Ahrens must go u...

Rogue of the Lowlands

Rogue of the Lowlands

0/5$3.99

The long awaited seventh book in Cynthia Breeding's Rogue series.An independent Scottish lass who takes orders from no one…A Highlander used to being obeyed without quest...

Christmas Island

Christmas Island

0/5$0.99

A Short Story - Lured by Jimmy Buffet’s lyrics of Christmas Island, it seems to be the perfect, tropical paradise for Liv to escape from a cold Minnesota winter—and maybe, if Christmas w...

Seasons of Love

Seasons of Love

0/5$1.99

A Regency Anthology -The Thief – On a lark, Constance Archer wagers with Lord Blackhazel that one of them will be betrothed before the Season ended. A wager she now hates. At t...

Love Waits

Love Waits

0/5$0.99

A delightful romp through Regency times...Dacey O’Connor longs to return home to Ireland, but is left nearly destitute after her cheating husband is killed in a duel and she mu...

Faerie Fantasy Christmas: Maggie Maguire's Dream

Faerie Fantasy Christmas: Maggie Maguire's Dream

0/5$0.99

Magic Happens at ChristmasA modern woman is sent back in Time to ensure her futures is bright.Cynical after her louse of an ex-boyfriend took the money she thought sh...

Rogue of the Highlands

Rogue of the Highlands

4.5/5$3.99

Left widowed and penniless after a loveless arranged marriage, Jillian reluctantly accepts the job of “refining” a Scottish Highlander who’s inherited an English title. The man infuria...

A Dance of Manners

A Dance of Manners

0/5$1.99

“Enchanted Journey” by Cynthia BreedingAttending a Regency ball by a local group of actors is just what American Ashley Bouvier needs to get over her messy divorce from a cheating ...

Home of the Dragon

Home of the Dragon

0/5$0.99

…Dragon…Shifter…Slayer…A dragon-shifter who fought with the Pendragon and King Arthur has been given the honor and duty of protecting a powerful stones—an emerald—whi...

The Bayou Prince

The Bayou Prince

0/5$0.99

A Short Story -A rakish privateer for outlawed Jean LaFitte, must win the trust of the niece to Jean’s nemesis to persuade the man to pardon Jean.However, the privateer s...

A Viking for Christmas

A Viking for Christmas

0/5$0.99

Ericka Norn hasn’t had a lot of luck in finding the right man. But then, she’s always been more interested in the past than the present. Case in point…her Christmas gift to herself is ...

Encounter With Destiny

Encounter With Destiny

0/5$0.99

A Short World War II romance -Her people were persecuted by the Germans much like the Jews. Even now, her family was forced to hide in the depths of the Bavarian Forest to elude ...

The Dragon's Lair

The Dragon's Lair

0/5$0.99

…Dragons…Shifters…SlayersThree dragon-shifters who fought with the Pendragon and King Arthur have been given the honor and duty of protecting three powerful stones—a sapp...

A Rake's Rebellion

A Rake's Rebellion

4/5$3.99

After a night of debauchery, Lord Barclay wakes up to find a woman in his bed. That's not unusual, but this one is fully clothed. When she tells him they are married, he is instantly cold so...

Rogue of the Isles

Rogue of the Isles

4.5/5$3.99

Jamie MacLeod is the most annoying male Mari has ever had the misfortune to meet. It certainly doesn’t help that he’s devilishly handsome and as tall and broad as a tree. No matter what ...

Winds of Destiny

Winds of Destiny

0/5$0.99

A Short Story -Sitting alone in a bar on her fortieth birthday wasn’t something Katherine Armand had ever planned. With her marriage over, better to pay attention to her career...

Highland Champion

Highland Champion

4.5/5$3.99

Lorelei Caldwell is elated about her first season in London. For the next few months, she and her best friend can indulge in balls, flirting, and enjoying the delights of London society with...

Sister of Rogues

Sister of Rogues

4.5/5$3.99

A victim of a madman who wants revenge on her family, Fiona MacLeod is kidnapped and committed to the Dublin Lunatic Asylum. Her only bit of good luck is that the asylum’s overcrowded and ...

Rogue of the High Seas

Rogue of the High Seas

4.5/5$3.99

Surrounded by Highlander brothers and cousins, Shauna MacLeod is used to big and burly men thinking they’re in charge. The visiting American ship captain is a breath of fresh air and a wel...

Highland Renegade

Highland Renegade

4/5$3.99

“Lush, evocative, and sizzling-hot.” -Ann Major, USA Today bestselling authorEmily, the Dowager Countess of Woodhaven, has received title to lands in the...

Rogue of the Moors

Rogue of the Moors

4.5/5$3.99

Bridget MacLeod needs some space from her well-intentioned but overbearing family who’ve been crowding around her since her husband’s death. How can she keep her late husband’s secret ...

Their Finest Hour

Their Finest Hour

0/5$1.99

World War II – Growing international tension leads to the most destructive war in history.Poignant tales from Germany’s shores to America’s Home FrontEncounter With D...

A Pirate of Her Own

A Pirate of Her Own

0/5$0.99

Join Jean LaFitte and his pirates on a delight romp on the high seas.~~~Emily hit the ground with a thud that jettisoned the air from her lungs. A fuzzy, gray mist su...