Popular K L Slater Books 2022

K L Slater

Who is K L Slater?

Slater-type orbitals (STOs) are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method. They are named after the physicist John C. Slater, who introduced them in 1930.They possess exponential decay at long range and Kato's cusp condition at short range (when combined as hydrogen-like atom functions, i.e. the analytical solutions of the stationary Schrödinger equation for one electron atoms). Unlike the hydrogen-like ("hydrogenic") Schrödinger orbitals, STOs have no radial nodes (neither do Gaussian-type orbitals). Definition STOs have the following radial part: R ( r ) = N r n − 1 e − ζ r {\displaystyle R(r)=Nr^{n-1}e^{-\zeta r}\,} where n is a natural number that plays the role of principal quantum number, n = 1,2,..., N is a normalizing constant, r is the distance of the electron from the atomic nucleus, and ζ {\displaystyle \zeta } is a constant related to the effective charge of the nucleus, the nuclear charge being partly shielded by electrons. Historically, the effective nuclear charge was estimated by Slater's rules.The normalization constant is computed from the integral ∫ 0 ∞ x n e − α x d ⁡ x = n !   α n + 1   . {\displaystyle \int _{0}^{\infty }x^{n}e^{-\alpha x}\operatorname {d} x={\frac {n!}{~\alpha ^{n+1}\,}}~.} Hence N 2 ∫ 0 ∞ ( r n − 1 e − ζ r ) 2 r 2 d ⁡ r = 1 ⟹ N = ( 2 ζ ) n 2 ζ ( 2 n ) !   . {\displaystyle N^{2}\int _{0}^{\infty }\left(r^{n-1}e^{-\zeta r}\right)^{2}r^{2}\operatorname {d} r=1\Longrightarrow N=(2\zeta )^{n}{\sqrt {\frac {2\zeta }{(2n)!}}}~.} It is common to use the spherical harmonics Y l m ( r ) {\displaystyle Y_{l}^{m}(\mathbf {r} )} depending on the polar coordinates of the position vector r {\displaystyle \mathbf {r} } as the angular part of the Slater orbital. Derivatives The first radial derivative of the radial part of a Slater-type orbital is ∂ R ( r ) ∂ r = [ ( n − 1 ) r − ζ ] R ( r ) {\displaystyle {\partial R(r) \over \partial r}=\left[{\frac {(n-1)}{r}}-\zeta \right]R(r)} The radial Laplace operator is split in two differential operators ∇ 2 = 1 r 2 ∂ ∂ r ( r 2 ∂ ∂ r ) {\displaystyle \nabla ^{2}={1 \over r^{2}}{\partial \over \partial r}\left(r^{2}{\partial \over \partial r}\right)} The first differential operator of the Laplace operator yields ( r 2 ∂ ∂ r ) R ( r ) = [ ( n − 1 ) r − ζ r 2 ] R ( r ) {\displaystyle \left(r^{2}{\partial \over \partial r}\right)R(r)=\left[(n-1)r-\zeta r^{2}\right]R(r)} The total Laplace operator yields after applying the second differential operator ∇ 2 R ( r ) = ( 1 r 2 ∂ ∂ r ) [ ( n − 1 ) r − ζ r 2 ] R ( r ) {\displaystyle \nabla ^{2}R(r)=\left({1 \over r^{2}}{\partial \over \partial r}\right)\left[(n-1)r-\zeta r^{2}\right]R(r)} the result ∇ 2 R ( r ) = [ n ( n − 1 ) r 2 − 2 n ζ r + ζ 2 ] R ( r ) {\displaystyle \nabla ^{2}R(r)=\left[{n(n-1) \over r^{2}}-{2n\zeta \over r}+\zeta ^{2}\right]R(r)} Angular dependent derivatives of the spherical harmonics don't depend on the radial function and have to be evaluated separately. Integrals The fundamental mathematical properties are those associated with the kinetic energy, nuclear attraction and Coulomb repulsion integrals for placement of the orbital at the center of a single nucleus. Dropping the normalization factor N, the representation of the orbitals below is χ n ℓ m ( r ) = r n − 1   e − ζ r   Y ℓ m ( r )   . {\displaystyle \chi _{n\ell m}({\mathbf {r} })=r^{n-1}~e^{-\zeta \,r}~Y_{\ell }^{m}({\mathbf {r} })~.} The Fourier transform is χ n ℓ m ( k ) = ∫ e i k ⋅ r   χ n ℓ m ( r )   d 3 ⁡ r {\displaystyle \chi _{n\ell m}({\mathbf {k} })=\int e^{i{\mathbf {k} }\cdot {\mathbf {r} }}~\chi _{n\ell m}({\mathbf {r} })~\operatorname {d} ^{3}r} = 4 π   ( n − ℓ ) !   ( 2 ζ ) n   ( i k / ζ ) ℓ   Y ℓ m ( k ) ∑ s = 0 ⌊ ( n − ℓ ) / 2 ⌋ ω s n ℓ   ( k 2 + ζ 2 ) n + 1 − s {\displaystyle =4\pi ~(n-\ell )!~(2\zeta )^{n}~(ik/\zeta )^{\ell }~Y_{\ell }^{m}({\mathbf {k} })\sum _{s=0}^{\lfloor (n-\ell )/2\rfloor }{\frac {\omega _{s}^{n\ell }}{~(k^{2}+\zeta ^{2})^{n+1-s}}}} ,where the ω {\displaystyle \omega } are defined by ω s n ℓ ≡ ( − 1 4 ζ 2 ) s ( n − s ) !   s !   ( n − ℓ − 2 s ) !   {\displaystyle \omega _{s}^{n\ell }\equiv \left(-{\frac {1}{4\zeta ^{2}}}\right)^{s}\,{\frac {(n-s)!}{~s!~(n-\ell -2s)!~}}} .The overlap integral is ∫ χ n ℓ m ∗ ( r )   χ n ′ ℓ ′ m ′ ( r )   d 3 ⁡ r = δ ℓ ℓ ′ δ m m ′ ( n + n ′ ) !   ( ζ + ζ ′ ) n + n ′ + 1   {\displaystyle \int \chi _{n\ell m}^{*}(r)~\chi _{n'\ell 'm'}(r)~\operatorname {d} ^{3}r=\delta _{\ell \ell '}\,\delta _{mm'}\,{\frac {(n+n')!}{~(\zeta +\zeta ')^{n+n'+1}}}~} of which the normalization integral is a special case. The superscript star denotes complex-conjugation. The kinetic energy integral is ∫ χ n ℓ m ∗ ( r )   ( − 1 2 ∇ 2 ) χ n ′ ℓ ′ m ′ ( r )   d 3 ⁡ r = {\displaystyle \int \chi _{n\ell m}^{*}(r)~\left(-{\tfrac {1}{2}}\nabla ^{2}\right)\,\chi _{n'\ell 'm'}(r)~\operatorname {d} ^{3}r=} 1 2 δ ℓ ℓ ′ δ m m ′ ∫ 0 ∞ e − ( ζ + ζ ′ ) r [ [ ℓ ′ ( ℓ ′ + 1 ) − n ′ ( n ′ − 1 ) ] r n + n ′ − 2 + 2 ζ ′ n ′ r n + n ′ − 1 − ζ ′ 2 r n + n ′ ]   d ⁡ r   , {\displaystyle {\frac {1}{2}}\delta _{\ell \ell '}\,\delta _{mm'}\,\int _{0}^{\infty }e^{-(\zeta +\zeta ')\,r}\left[[\ell '(\ell '+1)-n'(n'-1)]\,r^{n+n'-2}+2\zeta 'n'\,r^{n+n'-1}-\zeta '^{2}\,r^{n+n'}\right]~\operatorname {d} r~,} a sum over three overlap integrals already computed above. The Coulomb repulsion integral can be evaluated using the Fourier representation (see above) χ n ℓ m ∗ ( r ) = ∫   e i k ⋅ r   ( 2 π ) 3   χ n ℓ m ∗ ( k )   d 3 ⁡ k {\displaystyle \chi _{n\ell m}^{*}({\mathbf {r} })=\int {\frac {~e^{i\mathbf {k} \cdot \mathbf {r} }~}{(2\pi )^{3}}}~\chi _{n\ell m}^{*}({\mathbf {k} })~\operatorname {d} ^{3}k} which yields ∫ χ n ℓ m ∗ ( r ) 1 | r − r ′ |   χ n ′ ℓ ′ m ′ ( r ′ )   d 3 ⁡ r = 4 π ∫ 1 ( 2 π ) 3   χ n ℓ m ∗ ( k )   1 k 2   χ n ′ ℓ ′ m ′ ( k )   d 3 ⁡ k {\displaystyle \int \chi _{n\ell m}^{*}(\mathbf {r} ){\frac {1}{\left|\mathbf {r} -\mathbf {r} '\right|}}~\chi _{n'\ell 'm'}(\mathbf {r} ')~\operatorname {d} ^{3}r=4\pi \int {\frac {1}{(2\pi )^{3}}}~\chi _{n\ell m}^{*}(\mathbf {k} )~{\frac {1}{k^{2}}}~\chi _{n'\ell 'm'}(\mathbf {k} )~\operatorname {d} ^{3}k} = 8 δ ℓ ℓ ′ δ m m ′   ( n − ℓ ) !   ( n ′ − ℓ ) !   ( 2 ζ ) n ζ ℓ ( 2 ζ ′ ) n ′ ζ ′ ℓ ∫ 0 ∞ k 2 ℓ [ ∑ s = 0 ⌊ ( n − ℓ ) / 2 ⌋ ω s n ℓ ( k 2 + ζ 2 ) n + 1 − s ∑ s ′ = 0 ⌊ ( n ′ − ℓ ) / 2 ⌋ ω s ′ n ′ ℓ ′     ( k 2 + ζ ′ 2 ) n ′ + 1 − s ′   ] d ⁡ k {\displaystyle =8\,\delta _{\ell \ell '}\,\delta _{mm'}~(n-\ell )!~(n'-\ell )!~{\frac {\,(2\zeta )^{n}\,}{\zeta ^{\ell }}}{\frac {\,(2\zeta ')^{n'}\,}{\zeta '^{\ell }}}\int _{0}^{\infty }k^{2\ell }\left[\sum _{s=0}^{\lfloor (n-\ell )/2\rfloor }{\frac {\omega _{s}^{n\ell }}{(k^{2}+\zeta ^{2})^{n+1-s}}}\sum _{s'=0}^{\lfloor (n'-\ell )/2\rfloor }{\frac {\omega _{s'}^{n'\ell '}}{~~(k^{2}+\zeta '^{2})^{n'+1-s'}~}}\right]\operatorname {d} k} These are either individually calculated with the law of residues or recursively as proposed by Cruz et al. (1978). STO software Some quantum chemistry software uses sets of Slater-type functions (STF) analogous to Slater type orbitals, but with variable exponents chosen to minimize the total molecular energy (rather than by Slater's rules as above). The fact that products of two STOs on distinct atoms are more difficult to express than those of Gaussian functions (which give a displaced Gaussian) has led many to expand them in terms of Gaussians.Analytical ab initio software for polyatomic molecules has been developed, e.g., STOP: a Slater Type Orbital Package in 1996.SMILES uses analytical expressions when available and Gaussian expansions otherwise. It was first released in 2000. Various grid integration schemes have been developed, sometimes after analytical work for quadrature (Scrocco), most famously in the ADF suite of DFT codes. After the work of John Pople, Warren. J. Hehre and Robert J. Steward, a least squares representation of the Slater atomic orbitals as a sum of Gaussian-type orbitals is used. In their 1969 paper, the fundamentals of this principle are discussed and then further improved and used in the GAUSSIAN DFT code. See also Basis sets used in computational chemistryReferences Harris, F. E.; Michels, H. H. (1966). "Multicenter integrals in quantum mechanics. 2. Evaluation of electron-repulsion integrals for Slater-type orbitals". Journal of Chemical Physics. 45 (1): 116. Bibcode:1966JChPh..45..116H. doi:10.1063/1.1727293. Filter, E.; Steinborn, E. O. (1978). "Extremely compact formulas for molecular two-center and one-electron integrals and Coulomb integrals over Slater-type atomic orbitals". Physical Review A. 18 (1): 1–11. Bibcode:1978PhRvA..18....1F. doi:10.1103/PhysRevA.18.1. McLean, A. D.; McLean, R. S. (1981). "Roothaan-Hartree-Fock Atomic Wave Functions, Slater Basis-Set Expansions for Z = 55–92". Atomic Data and Nuclear Data Tables. 26 (3–4): 197–381. Bibcode:1981ADNDT..26..197M. doi:10.1016/0092-640X(81)90012-7. Datta, S. (1985). "Evaluation of Coulomb integrals with hydrogenic and Slater-type orbitals". Journal of Physics B. 18 (5): 853–857. Bibcode:1985JPhB...18..853D. doi:10.1088/0022-3700/18/5/006. Grotendorst, J.; Steinborn, E. O. (1985). "The Fourier transform of a two-center product of exponential-type functions and its efficient evaluation". Journal of Computational Physics. 61 (2): 195–217. Bibcode:1985JCoPh..61..195G. doi:10.1016/0021-9991(85)90082-8. Tai, H. (1986). "Analytic evaluation of two-center molecular integrals". Physical Review A. 33 (6): 3657–3666. Bibcode:1986PhRvA..33.3657T. doi:10.1103/PhysRevA.33.3657. PMID 9897107. Grotendorst, J.; Weniger, E. J.; Steinborn, E. O. (1986). "Efficient evaluation of infinite-series representations for overlap, two-center nuclear attraction, and Coulomb integrals using nonlinear convergence accelerators". Physical Review A. 33 (6): 3706–3726. Bibcode:1986PhRvA..33.3706G. doi:10.1103/PhysRevA.33.3706. PMID 9897112. Grotendorst, J.; Steinborn, E. O. (1988). "Numerical evaluation of molecular one- and two-electron multicenter integrals with exponential-type orbitals via the Fourier-transform method". Physical Review A. 38 (8): 3857–3876. Bibcode:1988PhRvA..38.3857G. doi:10.1103/PhysRevA.38.3857. PMID 9900838. Bunge, C. F.; Barrientos, J. A.; Bunge, A. V. (1993). "Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z=2–54". Atomic Data and Nuclear Data Tables. 53 (1): 113–162. Bibcode:1993ADNDT..53..113B. doi:10.1006/adnd.1993.1003. Harris, F. E. (1997). "Analytic evaluation of three-electron atomic integrals with Slater wave functions". Physical Review A. 55 (3): 1820–1831. Bibcode:1997PhRvA..55.1820H. doi:10.1103/PhysRevA.55.1820. Ema, I.; García de La Vega, J. M.; Miguel, B.; Dotterweich, J.; Meißner, H.; Steinborn, E. O. (1999). "Exponential-type basis functions: single- and double-zeta B function basis sets for the ground states of neutral atoms from Z=2 to Z=36". Atomic Data and Nuclear Data Tables. 72 (1): 57–99. Bibcode:1999ADNDT..72...57E. doi:10.1006/adnd.1999.0809. Fernández Rico, J.; Fernández, J. J.; Ema, I.; López, R.; Ramírez, G. (2001). "Four-center integrals for Gaussian and Exponential Functions". International Journal of Quantum Chemistry. 81 (1): 16–28. doi:10.1002/1097-461X(2001)81:1<16::AID-QUA5>3.0.CO;2-A. Guseinov, I. I.; Mamedov, B. A. (2001). "On the calculation of arbitrary multielectron molecular integrals over Slater-Type Orbitals using recurrence relations for overlap integrals: II. Two-center expansion method". International Journal of Quantum Chemistry. 81 (2): 117–125. doi:10.1002/1097-461X(2001)81:2<117::AID-QUA1>3.0.CO;2-L. Guseinov, I. I. (2001). "Evaluation of expansion coefficients for translation of Slater-Type orbitals using complete orthonormal sets of Exponential-Type functions". International Journal of Quantum Chemistry. 81 (2): 126–129. doi:10.1002/1097-461X(2001)81:2<126::AID-QUA2>3.0.CO;2-K. Guseinov, I. I.; Mamedov, B. A. (2002). "On the calculation of arbitrary multielectron molecular integrals over Slater-Type Orbitals using recurrence relations for overlap integrals: III. auxiliary functions Q1nn' and Gq−nn". International Journal of Quantum Chemistry. 86 (5): 440–449. doi:10.1002/qua.10045. Guseinov, I. I.; Mamedov, B. A. (2002). "On the calculation of arbitrary multielectron molecular integrals over Slater-Type Orbitals using recurrence relations for overlap integrals: IV. Use of recurrence relations for basic two-center overlap and hybrid integrals". International Journal of Quantum Chemistry. 86 (5): 450–455. doi:10.1002/qua.10044. Özdogan, T.; Orbay, M. (2002). "Evaluation of two-center overlap and nuclear attraction integrals over Slater-type orbitals with integer and non-integer principal quantum numbers". International Journal of Quantum Chemistry. 87 (1): 15–22. doi:10.1002/qua.10052. Harris, F. E. (2003). "Comment on Computation of Two-Center Coulomb integrals over Slater-Type orbitals using elliptical coordinates". International Journal of Quantum Chemistry. 93 (5): 332–334. doi:10.1002/qua.10567.

Ferme bien ta porte

Ferme bien ta porte

0/5$10.99

Il y a des propositions qui ne se refusent pas. Freya vient de perdre son mari et sa maison. Elle a besoin d’un toit de toute urgence, pour elle et sa fille de cinq ans....

Closer

Closer

4/5$3.99

I know my daughter better than I know myself and if there’s one thing I know for sure at this moment: it's that Maisie is not ok. My ex-husband Shaun and I are st...

The K.L. Slater Collection: Blink, The Visitor, Closer

The K.L. Slater Collection: Blink, The Visitor, Closer

0/5$7.99

Are you looking for psychological thrillers that will have you hooked in seconds? You’ll be totally gripped by these books from Amazon top three bestselling author K.L. Slater.

Niebezpieczna dziewczyna

Niebezpieczna dziewczyna

0/5$9.99

Miała piętnaście lat, kiedy na jej rodzinę spadła tragedia. Anna wini za to jedną osobę. Poczucie krzywdy stało się jej obsesją. Odsunęła się od ludzi. Jest sama. Nie radzi ...

Elle ou moi

Elle ou moi

0/5$6.99

Jusqu'où iriez-vous pour protéger votre famille ? Depuis la mort de sa femme, Ben fait de son mieux pour élever ses enfants, grâce à l'aide précieuse de sa mère. La...

Single

Single

4/5$3.99

‘I keep feeling like I’m being watched – dropping the boys off at school, choosing wine at the supermarket – but when I turn around there’s nobody there…’ Wh...

Sous mes yeux

Sous mes yeux

0/5$10.99

La confiance aveugle précède toujours le drame... Quand Billie, huit ans, disparaît dans la forêt alors qu’il était en train de jouer au cerf-volant avec sa sœur, ...

Evie

Evie

0/5$6.99

« Brillant, intelligent... À lire absolument ! » - B. A. Paris« Absolument génial ! Le suspense psychologique à sa perfection ! Le twist final est un des meilleurs que j...

Uwięziona dziewcyna

Uwięziona dziewcyna

0/5$8.99

Ona słyszy ich, ale oni nie słyszą jej. Myślą, że jest w śpiączce i już się nie wybudzi. Musi znaleźć sposób, żeby ją usłyszeli. Tylko wtedy uratuje małą dziewczynkę i...

Safe with Me

Safe with Me

4/5$3.99

Thirteen years ago someone did something very bad to Anna. Now it’s her turn to get even …  Anna lives a solitary existence, taking solace in order and rou...

The Mistake

The Mistake

4/5$3.99

You think you know the truth about the people you love.  But one discovery can change everything…  Eight-year-old Billy goes miss...

Uwięziona dziewczyna

Uwięziona dziewczyna

0/5$8.99

Ona słyszy ich, ale oni nie słyszą jej. Myślą, że jest w śpiączce i już się nie wybudzi. Musi znaleźć sposób, żeby ją usłyszeli. Tylko wtedy uratuje mał...

Liar

Liar

4/5$3.99

How far would you go to protect your family? Single dad Ben is doing his best to raise his children, with the help of his devoted mother Judi. And then Ben meets A...

The Silent Ones

The Silent Ones

4/5$3.99

This morning, I was packing up lunches, ironing, putting on the laundry I should have done last night. Now my precious daughter is accused of murder. When ten-year-old co...

Non fidarti di lui

Non fidarti di lui

0/5$5.99

Lo conosci. Credi a quel che dice. Non dovresti farlo. Billy aveva solo otto anni quando, durante una passeggiata con sua sorella Rose, scomparve. Stava giocando con un aquilone,...

The Marriage

The Marriage

4/5$3.99

Ten years ago he killed my son. Today I married him. Ten years ago my darling son Jesse was murdered and our perfect family was destroyed. My strong, handsome boy, so full...

Finding Grace

Finding Grace

4/5$3.99

This morning, my daughter sat right here, munching her breakfast, too excited to finish it. Now, she is missing. The day after her ninth birthday, Lucie and Blake Sullivan...

The Secret

The Secret

4/5$3.99

‘Totally blew me away and I loved every page… I would give it hundred stars if possible… so many twist and turns, it will make your head spin.’ Shuffl...

The Visitor

The Visitor

4/5$3.99

She has the life they all want. But what is she hiding? When Holly moves in to Baker Crescent, a quiet suburban street she causes quite a stir. Beautiful, talent...

Blink

Blink

4/5$3.99

What if the person you love most in the world was in terrible danger … because of you? Three years ago, Toni’s five-year-old daughter Evie disappeared af...

The Evidence

The Evidence

4/5$3.99

I can see her through the glass door. She’s smaller in real life than I expected. She looks the exact opposite of the type of woman that might murder her husband. Everyo...

The Widow

The Widow

4/5$3.99

My husband was not a monster. No matter what they say…   The day my husband, Michael, stepped in front of a lorry after being questioned by the police, my wo...